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We introduce a scheme for describing electromagnetic nondiffracting pulses propagating in isotropic and
lossless media characterized by a plasma-like refractive index. A family of nondiffracting waves in a dispersive
medium is analytically derived in the form of a generalization ofX waves propagating in vacuum. It is also
shown how the ratio between pulse width and plasma length has a crucial effect on the pulse dynamics.
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The first theoretical attempt to reduce diffractive spread-
ing of monochromatic fields dates back to Stratton[1], while
their first experimental observation was reported by Durnin
[2]. In the polychromatic domain, limited-diffraction pulses
have been predicted by Lu and Greenleaf[3–5] in the form
of X wave, a class of nondiffracting solutions of the free-
space scalar wave equation. More recently, theoretical inves-
tigations have been reported both in acoustics[6–9] and
electromagnetism[10–19], together with remarkable effort
aimed at generating and detecting nondiffracting pulses
[20–24]. A number of applications have been proposed like,
e.g., medical real-time imaging[25], optical microlithograhy
[26], dispersion compensation[27–29], and generation of
long plasma fibers for guiding intense pulses[30,31].

As far as dispersive media are concerned, schemes have
been considered[32–36] for describing nondiffracting
pulses. However, while analytical examples of e.m. nondif-
fractive pulses in vacuum are available in the form ofX
waves, no closed-form expressions of nondiffracting pulses
in dispersive media are yet been presented in the literature.

In this paper, we investigate nondiffracting pulses propa-
gating in isotropic plasmas. In particular, we develop a for-
mal scheme to describe their behavior, and we find out a
family of analytical solutions which can be considered the
dispersive generalization ofX waves.

The complex analytic signal associated to any cartesian
component of an arbitrary electromagnetic pulse propagating
(along the positivez axis) in a homogeneous and dispersive
medium is given by

f̂sr ',z,td =E
0

+`

dvE d2k'eik'·r 'eiskzz−vtdF̃sk',vd, s1d

where r '=xêx+yêy, k'=kxêx+kyêy, d2k'=dkxdky, kz

=Îv2n2svd /c2− uk'u2, nsvd is the refractive index, andF̃ is
an arbitrary well-behaved function of its arguments. Nondif-

fracting pulses are wave packets satisfying the shape-

invariance condition f̂sr ' ,z,td= f̂sr ' ,z−Vtd, which states
that the pulse rigidly travels with velocityV along thez axis.
In order to specialize Eq.(1) to describe nondiffracting
pulses, all the plane-wave components of the packet must
satisfy the relationv=kzV. This implies that, in thesk' ,vd
space, a surfaceS (if it exists) is selected to which the inte-
gration in Eq.(1) has to be restricted. It is worth noting that
the shape of such a surface depends on the speedV and on
the refractive index and, hence, on the dispersive properties
of the medium. As an example, in vacuum the surfaceSvac is
the conev=hVuk'u (see Fig. 1), with h=sV2/c2−1d−1/2, and
its existence requires thatV.c expressing the “superlumi-
naly” of nondiffracting pulses. In an arbitrary dispersive me-
dium it is obvious that, whenever the imaginary part of the
refractive index is not negligible, the earlier surface cannot
be defined so that nondiffracting pulses do not exist; this is
consistent with the fact that, in a highly lossy medium, a
pulse cannot propagate undisturbed. Therefore, the integra-
tion in Eq. (1) has to be additionally restricted to those parts
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FIG. 1. Relations betweenv and k'= uk'u of a nondiffracting
pulse propagating in vacuumsv=hVk'd and in a plasmafv
=hVskp

2+k'
2 d1/2g.
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of the surfaceS that are sufficiently far from regions sur-
rounding the resonance frequencies of the medium.

Let us consider a homogeneous and dispersive medium
whose refractive index is

nsvd =Î1 −
vp

2

v2 , s2d

wherev is the frequency andvp is a characteristic plasma
frequency of the medium. The main example of applicability
of Eq. (2) is that of a lossless and isotropic plasma composed
by electrons and heavy ions, wherevp=Î4pN0e

2/m, N0, e,
andm being the electron density, charge, and mass. We note
that Eq.(2) is also a suitable model for the high frequency
tail of the refractive index of most dielectrics and metals,
since it holds whenever the field frequencies are much
greater than the greatest resonance frequency of the material
[37]. Let us now look for nondiffracting pulses in a medium
whose refractive index is of the form given by Eq.(2). The
surfaceSpla, resulting from the diffraction-free conditionv
=kzV, is given by v=hVskp

2+ uk'u2d1/2 (see Fig. 1), where
kp=vp/c. As in vacuum, this surface exists only ifV.c,
implying that nondiffracting pulses are superluminal entities
also in plasmas. The surfaceSpla is a revolution hyperboloid
lying above the coneSvac and asymptotically touching it.
The vertex is on thev axis atv=shV/cdvp, implying that
the whole frequency band of a nondiffracting pulse is above
the plasma frequencyvp, an expected and necessary condi-
tion for the reality ofnsvd in Eq. (2). The existence of this
frequency threshold is the major responsible for the differ-
ences between nondiffracting pulses in vacuum and plasmas.
The restriction of the integration domain in Eq.(1) to the
surfaceSpla is obtained by requiring that

F̃sk',vd = f̃sk'ddsv − VhÎkp
2 + uk'u2d, s3d

where f̃ is an arbitrary function ofk' anddsjd is the Dirac
delta function. Inserting Eq.(3) into Eq. (1) and performing
the integral overv we readily get

f̂sr ',Zd =E d2k'eik'·r 'eihZÎkp
2+uk'u2f̃sk'd, s4d

whereZ=z−Vt is the longitudinal coordinate in a frame rig-
idly traveling with the pulse. Equation(4) yields the most
general expression for a nondiffracting pulse in a plasma.

The physical meaning of the spectrumf̃sk'd is obtained by
evaluating Eq.(4) at Z=0 and inverting the resulting Fourier
integral, thus obtaining

f̃sk'd =
1

s2pd2 E d2r 'e−ik'·r ' f̂sr ',0d, s5d

which is the two dimensional Fourier transform of the field
at the waist planeZ=0. Note that, settingkp=0 in Eq.(4), we
get

f̂sr ',Zd =E d2k'eik'·r 'eihZuk'u f̃sk'd, s6d

which describes nondiffracting pulses propagating in vacuum
[14], as expected. We note that the existence of the plasma
lengthLp=kp

−1 gives rise to a phenomenology of nondiffract-
ing pulses. In order to understand the effect of the lengthLp
on the structure of the pulse, let us consider its transverse
width w at Z=0. Suppose thatw!Lp so that, as a conse-

quence of Eq.(5), the spectrumf̃sk'd is vanishing only out-
side the circleuk'u*w−1@kp. This implies that in the inte-
grand of Eq.(4) kp can be neglected with respect touk'u, so
that the pulse closely resembles the one in Eq.(6). We con-
clude that, for narrow pulses, the plasma does not effectively
alter the structure of a nondiffracting pulse propagating in
vacuum. From a geometrical point of view, this is related to
the fact that the spectrum of a narrow pulse “explores” a vast
region of the hyperboloidSpla, so that the major spectral
contribution is due to regions so far from the origin thatSpla
can be approximately replaced by the vacuum coneSvac. In
the opposite situationw@Lp, we conversely have that the

spectrumf̃sk'd is not negligible only inside the circleuk'u
&w−1!kp so that a sort ofparaxial approximation can be
done by expanding the square root in Eq.(4) up to the first
relevant order, thus getting

f̂sr ',Zd = eihkpZE d2k'eik'·r 'eihZ/2kpuk'u2f̃sk'd. s7d

The structure of this nondiffracting pulse is extremely dif-
ferent from that of a standard nondiffracting pulse propagat-
ing in vacuum and geometrically this is a consequence of the
considerable difference betweenSpla and Svac in the neigh-
borhood ofk'=0, which is the relevant spectral region of a
wide pulse. It is interesting to note that the field in Eq.(7)
exhibits a structure formally coincident with that of a mono-
chromatic paraxial beam propagating in vacuum(after the
substitutionsv /c→kp/h andz→z−Vt). As a consequence,
the field does not show the usualX-shaped profile typical of
a large class of nondiffracting pulses in vacuum. The earlier
discussion proves that the plasma lengthLp is a key param-
eter defining two opposite limiting regimes(w!Lp and w
@Lp) for nondiffracting pulses in plasmas.

Let us now consider the family of nondiffracting pulses
whose spectrum is given by

f̃ nsk'd = f̄
s2

2p
ssÎkp

2 + uk'u2dn−1e−sÎkp
2+uk'u2, s8d

wheren is a positive integer andf̄ and s are two real con-
stants. Inserting Eq.(8) into Eq. (4), changing variables ac-
cording to kx=sh2−kp

2d1/2cosu and ky=sh2−kp
2d1/2sinu, and

performing the integral overu we get
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f̂ nsr ',Zd = f̄sn+1E
kp

`

dhe−ss−ihZdhhnJ0sur 'uÎh2 − kp
2d. s9d

Exploiting the properties of the Laplace transform, we
readily obtain[38]:

f̂ nsr ',Zd = f̄
]n

]zn3 e−kpsÎs1 − zd2+ur 'u2/s2

Îs1 − zd2 +
ur 'u2

s2 4
z=ihZ/s

. s10d

This is an exact result and also ananalytical exampleof
nondiffracting pulses propagating in a dispersive medium.
The family of nondiffracting pulses of Eq.(10) can be re-
garded as the dispersive plasma counterpart of the well-
known family of X waves introduced by Lou and Greenleaf
[4] since, in the limiting casekp→0, the two families coin-
cide. In order to discuss the main properties of this class of

fields, let us consider its first(and also generating) element
obtained from Eq.(10) for n=0, i.e.:

f̂0sr ',Zd = f̄
e−kpsÎs1 − ihZ/sd2+ur 'u2/s2

ÎS1 −
ihZ

s
D2

+
ur 'u2

s2

, s11d

so that the parameters turns out to control the pulse width on
its waist atZ=0. The influence of the medium is contained in
thekp-dependent exponential, implyingf0<exps−kpur 'ud for
ur 'u→ +`, so that the pulse transversally falls off faster than
the corresponding packet in vacuum. Fors!Lp, i.e., kps
!1, the pulse approaches the vacuum counterpart(the expo-
nential practically being equal to 1). For values ofs compa-
rable or larger thanLp the medium influence tends to become
relevant, as intuitive, and the pulse loses the typicalX-shaped
profile. In Fig. 2, we plot the modulus of the normalized field

f0/ f̄ of Eq. (11) for various plasma lengths. Note that the two
arms of theX, typical of narrow pulses, tend to merge for

FIG. 2. Plot of the modulus off0/ f̄ from Eq. (11) as a function ofx/s and hZ/s at y=0 for various plasma lengths:(a) Lp=10s; (b)
Lp=2s; (c) Lp=0.5s; (d) Lp=0.1s. Note theX-shaped profile of plot(a) and the typical paraxial features of plot(d).
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increasing pulse width into a unique structure whose shape
closely resembles a paraxial Gaussian beam. It is also inter-
esting to note that a field closely related to Eq.(11) has been
considered in a nonlinear regime by Conti[39] in the frame
of nondiffracting propagation in Kerr media.

In conclusion we have presented a treatment for describ-
ing nondiffracting pulses propagating in lossless and isotro-
pic plasmas. In particular we have obtained a relevant family
of exact solutions extending to dispersive media the well-

known class of vacuumX waves. Our results can be applied
to a wide class of dielectrics and metals in the high fre-
quency regime characterized by a refractive index of the
form of Eq. (2).
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